Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase.

نویسندگان

  • Susan Aiston
  • Birgitte Andersen
  • Loranne Agius
چکیده

High glucose concentration suppresses hepatic glycogenolysis by allosteric inhibition and dephosphorylation (inactivation) of phosphorylase-a. The latter effect is attributed to a direct effect of glucose on the conformation of phosphorylase-a. Although glucose-6-phosphate (G6P), like glucose, stimulates dephosphorylation of phosphorylase-a by phosphorylase phosphatase, its physiological role in regulating glycogenolysis in intact hepatocytes has not been tested. We show in this study that metabolic conditions associated with an increase in G6P, including glucokinase overexpression and incubation with octanoate or dihydroxyacetone, cause inactivation of phosphorylase. The latter conditions also inhibit glycogenolysis. The activity of phosphorylase-a correlated inversely with the G6P concentration within the physiological range. The inhibition of glycogenolysis and inactivation of phosphorylase-a caused by 10 mmol/l glucose can be at least in part counteracted by inhibition of glucokinase with 5-thioglucose, which lowers G6P. In conclusion, metabolic conditions that alter the hepatic G6P content affect glycogen metabolism not only through regulation of glycogen synthase but also through regulation of the activation state of phosphorylase. Dysregulation of G6P in diabetes by changes in activity of glucokinase or glucose 6-phosphatase may be a contributing factor to impaired suppression of glycogenolysis by hyperglycemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular mode of inhibition of glycogenolysis in rat liver by the dihydropyridine derivative, BAY R3401: inhibition and inactivation of glycogen phosphorylase by an activated metabolite.

The racemic prodrug BAY R3401 suppresses hepatic glycogenolysis. BAY W1807, the active metabolite of BAY R3401, inhibits muscle glycogen phosphorylase a and b. We investigated whether BAY R3401 reduces hepatic glycogenolysis by allosteric inhibition or by phosphatase-catalyzed inactivation of phosphorylase. In gel-filtered liver extracts, racemic BAY U6751 (containing active BAY W1807) was test...

متن کامل

Skeletal Muscle Glycogenolysis

The effects of minimal increments in plasma insulin concentrations on hepatic glucose production and glucose uptake, skeletal muscle net glycogen synthesis and glycogenolysis, glycogen synthase and phosphorylase activity, glucose-6-phosphate and uridinediphosphoglucose (UDPG) concentrations were examined in 24-h and in 6-h fasted conscious rats. Insulin was infused for 120 min at rates of 1.5, ...

متن کامل

Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans.

13C NMR spectroscopy was used to assess flux rates of hepatic glycogen synthase and phosphorylase in overnight-fasted subjects under one of four hypoglucagonemic conditions: protocol I, hyperglycemic (approximately 10 mM) -hypoinsulinemia (approximately 40 pM); protocol II, euglycemic (approximately 5 mM) -hyperinsulinemia (approximately 400 pM); protocol III, hyperglycemic (approximately 10 mM...

متن کامل

A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition.

Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogen...

متن کامل

The cytosolic concentration of phosphate determines the maximal rate of glycogenolysis in perfused rat liver.

Glycogenolysis was studied in glycogen-rich perfused livers in which glycogen phosphorylase was fully converted into the a form by exposure of the livers to dibutyryl cyclic AMP. We monitored intracellular Pi by 31P n.m.r. Perfusion with Pi-free medium during 30 min caused a progressive decrease of the Pi signal to 50% of its initial value. In contrast, exposure of the livers to KCN and/or 2,4-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2003